ALY
Jet Propulsion Laboratory e
California Institute of Technology

ERNE Client v.1.0.0

for the Early Detection Research Network

NASA Jet Propulsion Laboratory 06 May 2005

TABLE OF CONTENTS i

Table of Contents

User's Guide

INtrOTUCTIONo e e e 1
Retrieving ProduCts e 3
UsiNg Profiles o 9
Information Captured ina Profile 10
Representation of Profiles 19
Querying Profile Servers 24

©2005 NASA/JPL « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2005 NASA/JPL

ALL RIGHTS RESERVED

11

1.1 INTRODUCTION 1

Introduction

ERNE Web Services

The Early Detection Research Network (ERNE) Resource Network Exchange (ERNE) is a distributed,
network-based, web accessible series of services that enable lookup, description, profiling, and retrieval of
specimen data. It's based on the Object Oriented Data Technology 's data grid services . It provides several
interfaces to scientists, data analysts, and developers as web services using standard Hyper Text Transfer
Protocol (HTTP) and Extensible Markup Language (XML) standards.

By providing interfaces using HTTP and XML standards, you can develop applications that use ERNE
metadata and data from all modern software environments.

Web Services

ERNE provides two web services:

* https://ginger.fhcrc.org/prod

This service provides for retrieval of specimen data products over HTTP. You pass in parameters that tell
what ERNE site to query and what specimen data to retrieve. In response, you get ERNE specimen
products.

e https://ginger.fhcrc.org/q

This service provides for resource location and description over HTTP. You pass in parameters that tells
what kind of metadata to search and a search expression. You get metadata descriptions (called "profiles")
back in XML format.

Both web services are centrally located, as you can see from the URLs, on a system at the Fred Hutchinson
Cancer Research Center. Back-end software (the data grid framework) automatically directs your query
throughout ERNE sites.

ERNE Software

The data grid framework that the ERNE uses to implement its data systems are all Java-based. As a result,
you can take advantage of Java software, included in this package, to simplify some tasks (specifically, profile
retrieval). You aten't required to use Java, of course, but several "jar" files ate included should you wish to.

The jar files included are:

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.1 INTRODUCTION 2

* edm commons. This jar contains common components that are needed by all the other jar files. You can
always grab the latest version from the Common Components web site.

* grid-profil e. This jar contains classes for the representation of profiles, which are metadata
descriptions of resources. Using these classes means you don't have to work with the XML representation
of profiles that come from the htt ps: // gi nger. f hcrc. or g/ g web service. You can always grab the
latest version from the Profile Service web site .

See the guide section on querying ERNE profile servers for instructions on using these two jars. (No jars are
provided for product retrieval since Java includes everything necessary for handling products already. See the
guide section on getting products for more details.)

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.2

1.2 RETRIEVING PRODUCTS 3

Retrieving Products

Getting Products

The EDRN Resource Network Exchange (ERNE) uses the OODT framework to transfer specimen data
(products) between the various ERNE sites spread throughout the country and the central node at the
DMCC. You can access products using any web browser or any program that can speak the Hyper Text
Transfer Protocol (HTTP). That means you can also embed product retrieval into your own analyis
applications or other programs, since virtually every programming language supports HTTP.

This section details what's involved in using HTTP to get specimen data (products) in ERNE.

Product Servers

Each of the participating ERNE sites runs a product server that the central node at the DMCC uses to transfer
product data. Product servers have the responsibility of converting queries from generic Common Data
Element (CDE) based expressions to site-specific queries, as well as returning site-specific results as
CDE-based results, all automatically.

To retrieve specimen data (products) via HTTP, you need to know two things:

1. The object name of the product server to which you'd like the query directed.

2. The guery expression that selects and constrains what specimen details to retrieve from the distant product
server.

When you present an HT'TP query for a product, the central node at the DMCC passes that query onto your
selected product server, gathers the results, and then streams it back to you over the HTTP conenction.

Object Names

The table below lists each participating site and the object name of the product server that runs there. (Please
note that as additional sites add product servers this list will be out of date. Check with the DMCC for the
latest information.)

Site Object Name
Brigham & Women's urn:eda:rmi:NIH.NCI.EDRN.BRIGHAM.PRODUCT_SERVER
Creighton U. urn:eda:rmi:NIH.NCI.EDRN.CREIGHTON.PRODUCT_SERVER

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.2 RETRIEVING PRODUCTS

Site Object Name
GLNE urn:eda:rmi:NIH.NCI.EDRN.DARTMOUTH.PRODUCT_SERVER
H.Lee Moffitt urn:eda:rmi:NIH.NCI.EDRN.MOFFITT.PRODUCT_SERVER

M.D. Anderson
U. Pittsburgh
UCHSC

UTHSCSA

urn:eda:rmi:NIH.NCI.EDRN.MDANDERSON.PRODUCT_SERVER
urn:eda:rmi:NIH.NCI.EDRN.PITTSBURGH.PRODUCT_SERVER
urn:eda:rmi:NIH.NCI.EDRN.COLORADO.PRODUCT_SERVER

urn:eda:rmi:NIH.NCI.EDRN.SANANTONIO.PRODUCT_SERVER

Note the object name in the right column of the node you want to query. You'll need it to make an HTTP

transaction.

Query Expressions

All of the product servers deployed throughout ERNE expect a query expression that describes the kinds of
specimens in which you're interested, and what details about those specimens to return. You form the quety

using a boolean expression that names the CDEs to constrain on and the CDEs to return. Here's an example:

SPECI MEN_COLLECTED_CODE = 3
OR SPECI MEN_COLLECTED CODE = 4

AND RETURN
AND RETURN

BASEL| NE_CANCER- | CD9- CODE
SPECI MEN_AMOUNT_REMAI NI NG_VALUE

This query will match all blood (code 3) and bone marrow (code 4) specimens, and will return two attributes

about each one, the ICD9 code and how much is remaining.

In general, you can form any complex boolean query using the following relational operators with each CDE:

* = or EQfor "equals"

* 1 = or NE for "not equals"

e <orLT for "less than"

* <= ot LE for "less than or equal to"

* > or GT for "gtreater than"

* >= or CE for "greater than or equal to"

* LI KE for a string match with %acting as a wildcard

* NOTLI KE for an inverse string match with %acting as a wildcard

You use the CDEs on the left hand side of a relational operator to constrain what to retrieve. You use them
on the right hand side with the special pseudo-element RETURN to select what attributes to retrieve.

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.2 RETRIEVING PRODUCTS 5

You can then link constraints together with these logical operators:
* AND or & for a logical intersection
* ORor| for alogical union
* NOT or! for a ligical negation
» Parentheses (and) for grouping

Note that it doesn't matter what logical operators you use for attributes to RETURN. All RETURN expressions
are processed separately and are used to select attributes.

For a list of the current CDEs, see the EDRN Secure Website .

Retrieving Products

Once you know the object name and have formed the guery expression, you're ready to get specimen data
products. You get products by accessing a web service at the URL:

https://ginger.fhcrc. org/prod

You pass request parameters through that URL that specify the object name of the server to query and the
query expression. Here's an example:

https://ginger.fhcrc.org/ prod?

obj ect =ur n: eda: rmi : Nl H. NCl . EDRN. SANANTONI O. PRODUCT _SERVER&
keywor dQuer y=SPECI MEN_COLLECTED CODE+%8D+3+AND+
RETURN+YBD+SPECI MEN_AMOUNT _REMAI NI NG_VALUE

We've broken this URL across multiple lines for readability, but if you look closely, you'll see we'te quetying
UTHSCSA for how much is left of all blood (code 3) specimens.

This interface accepts both HTTP GET and HTTP POST style requests, as detailed in the HTTP
specification . GET requests are generally easier; they encode the parameters to a request right in the URL
string. POST requests transmit the parameters of the request separately. Most HTTP clients, including web
browsers, as well as HT'TP APIs in programming languages, support both. For this document, we'll be using
GET requests. The choice of which to use is up to you.

Request Parameters

You pass in two request parameters to the ht t ps: // gi nger. f hcrc. or g/ pr od web service:
obj ect
Contains the object name of the product server to query.

keywor dQuery

©2005 NASA/JPL « ALL RIGHTS RESERVED

http://www.compass.fhcrc.org/enterEDRN
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

1.2 RETRIEVING PRODUCTS 6

Contains the guery expression.

In the example query above, the obj ect parameter was set to the object name of the UTHSCSA product
server, urn: eda: rm : NI H. NCl . EDRN. SANANTONI O PRODUCT_SERVER. The keywor dQuer y
parameter was set to the query expression SPECI MEN_COLLECTED_CODE = 3 AND RETURN =

SPEC! MEN_AMOUNT _REMAI NI NG VAL UE.

Request parameters must be propetly encoded by the rules of Uniform Resource Identifiers whether they're
part of the URL in an HTTP GET or transmitted separately in an HTTP POST. In general, this means that
characters like colons in object names as well as spaces and equals signs in query expressions need to be
propetly escaped. Most browsers and HTTP libraries will happily relax these rules, though, especially in cases
where there is no ambiguity. For ERNE queries, this means changing your spaces to +s and your equals signs
to ¥8Ds.

In the example query above, we got away without escaping the colons in the object name. A more
conforming URL might look like the following:

https://ginger.fhcrc. org/ prod?

obj ect =ur n%8Aeda%3Ar ni ¥8ANI H. NCl . EDRN. SANANTONI O. PRODUCT _ SERVER&
keywor dQuer y=SPECI MEN_COLLECTED CODE+%8D+3+AND+

RETURN+%3D+SPECI MEN_AMOUNT_REMAI NI NG_VALUE

While HTTP APIs may relax the rules about what can go in, they often provide utility functions that will
perform appropriate escapes for you. Consult your API documentation for more details.

Responses

Responses back from the web service at ht t ps: // gi nger. f hcrc. or g/ prod contain a data product
which is a table with the results of your specimen search. The result is plain text and uses tabs to separate
each column of data (cortesponding to the RETURN CDEs) and dollat-signs $ to sepatate each row.

Here's an example: we'll query Creighton University for all specimens taken from patients whose age at
diagnosis of cancer was 90 years or older, and return the participant ID and ICD9 code for each matching
specimen. The web service query looks like this:

https://ginger.fhcrc. org/ prod?

obj ect =urn: eda: rmi : Nl H. NCl . EDRN. CREI GHTON. PRODUCT_SERVER&

keywor dQuer y=BASEL| NE_CANCER- ACE- DI AGNOSI S_VALUE+%3E+90+AND+
RETURN+%3D+STUDY_PARTI Cl PANT_| D+AND+RETURN+%BD+BASEL| NE_ CANCER- | CD9- CODE

The results of this query (at the time of this writing) are:

95044251 157$95044251 157$95044251 157$95044251 157$
95022117 153$95022117 153$95022117 153$95022117 153%
95022117 153$95022117 153$95022117 153$95022117 153%
95022117 153$95022117 153$95022117 153$95022117 153%
95041299 182$95041299 182$95017265 157$95017265 157%

©2005 NASA/JPL -

ALL RIGHTS RESERVED

ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt

1.2 RETRIEVING PRODUCTS 7

95017265 157%

(The spaces above are tabs; we've broken this result across multiple lines for readability.) Reading left-to-right,
you can see that the first specimen is from patient 95044251, and the ICD9 code is 157. This repeats three
more times, meaning there are four such specimens available. Then there's a specimen for patient 95022117
with ICD9 code 153 (11 such specimens). Then patient 95041229 with ICD9 code 182. Then patient
95017265 with ICD9 code 157 (3 specimens).

You can process these results in any way you wish. For example, you might develop a VB macro for Excel
that inserts results into a spreadsheet, or develop a Java program that formats them into an invoice for
printing, and so forth.

Querying from Applications

As we've mentioned, you'te not limited to retrieving product data solely with a web browser. Most
programming languages include either direct or add-on support for doing HTTP. In this way, you can
develop analysis tools that retrieve ERNE specimen data products from the web service. To demonstrate this,
here is a complete Python script that retrieves specimen data and formats it as an XML document.

#!/ usr/ bi n/ pyt hon

i mport string
import wurllib2
i nport xm . dom m ni dom

i mpl = xm . dom m ni dom get DOM npl enent ati on()

doc = inpl.createDocunment (None, 'specinens', None)

root = doc. docunent El ement

product = urllib2.urlopen('https://ginger.fhcrc.org/prod?

obj ect =urn: eda: rm : Nl H. NCl . EDRN. CRElI GHTON. PRODUCT_SERVER&
keywor dQuer y=BASELI NE_CANCER- ACE- DI AGNOSI S_VALUE+YBE+90+AND+

RETURN+%@D+STUDY_PARTI Cl PANT_| D+AND+RETURN+%BD+BASEL| NE_CANCER- | CD9- CCDE')
for rowin product.read().split('$'):
colums = row.split('\t")
if len(colums) == 2:
patient = col ums][0]
icd9 = col ums[1]
speci men = doc. creat eEl ement (' speci nen')
speci men. set Attribute('patientl D, patient)
speci men. set Attribute('icd9', icd9)
r oot . appendChi | d(speci men)
print doc.toprettyxm (* ")

When run, the following is output:

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.2 RETRIEVING PRODUCTS

<?xm version="1.0"

<speci mens>
<speci men
<speci men
<speci nmen
<speci men
<speci men
<speci men
<speci men
<speci men
<speci men
<speci men
<speci men
<speci nmen
<speci men
<speci men
<speci men
<speci men
<speci men
<speci nmen
<speci men
<speci nmen
<speci men
</ speci mens>

©2005 NASA/JPL -

?>

cd9="157"
cd9="157"
cd9="157"
cd9="157"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="153"
cd9="182"
cd9="182"
cd9="157"
cd9="157"
cd9="157"

pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati
pati

ent | D="95044251"/ >
ent | D="95044251"/ >
ent | D="95044251"/ >
ent | D="95044251"/ >
ent | D="95022117"/ >
ent | D="95022117"/ >
ent | D="95022117"/ >
ent | D="95022117"/>
ent | D="95022117"/>
ent | D="95022117"/>
ent | D="95022117"/ >
ent | D="95022117"/ >
ent | D="95022117"/ >
ent | D="95022117"/ >
ent | D="95022117"/>
ent | D="95022117"/>
ent | D="95041299"/ >
ent | D="95041299"/ >
ent | D="95017265"/ >
ent | D="95017265"/ >
ent | D="95017265"/ >

ALL RIGHTS RESERVED

1.3

1.3 USING PROFILES 9

Using Profiles

Using ERNE Profiles

The Early Detection Research Network can use the OODT framework to distribute profiles of ERNE
resources. Profiles are metadata descriptions of resources. ERNE currently runs no profile servers, however,
several are planned. You can use these future profile servers to retrieve metadata descriptions of resources,

and discover the locations of resources.
To successfully use profiles with ERNE, you'll need to understand:

* The information captured by profiles
* The representation of profiles

* Queries you can make to ERNE profile servers

©2005 NASA/JPL « ALL RIGHTS RESERVED

131

1.3.1 INFORMATION CAPTURED IN A PROFILE 10

Information Captured in a Profile

Information Captured by Profiles

A profile serves as a generic template for describing the characteristics of a resource. Within ERNE, profiles
will exist to describe various resources that can include specimen records, documents, web pages, and other

items.

Information and Organization

Profiles capture three kinds of information:

¢ Resource Attributes

Resoutce attributes are metadata about the resource's inception. These attributes include the creator of the
resource, in what language it exists, when it was created, and so forth. These attributes are based on the
work of the Dublin Core Metadata Initiative .

¢ Profile Elements

Profile elements are metadata about the resource's composition. These tell you about the morphology of the
resource, such as data types captured within in, minimum and maximum values, synonymous elements,
and so forth. These attributes are based on ISO/IEC 11179 standards .

¢ Profile Attributes

Profile attributes are metadata about the profile itself, such as who made it, whether it's classified, tevision
notes, and so forth. It also has a unique identifying Object Identifier (OID) .

The following class diagram shows the relationship between the different parts of a profile:

©2005 NASA/JPL « ALL RIGHTS RESERVED

http://www.dublincore.org/
http://metadata-standards.org/11179/
http://www.alvestrand.no/objectid/index.html

1.3.1 INFORMATION CAPTURED IN A PROFILE

Profile
profileAdtrib '.&g__,e*"_i? 1 ﬁx{ﬁ.m roeAdtribuie
- elamants™._
.-""-.-.J-. ‘H"‘-\.
o " .
pmﬁﬁ p *?H:lgm
ProfileAttributes Map =-. | ResourceAttributes
-id: E_tring _ 1 Keys are ",—i;lentifie_r: String
-version: 3tring Strings. :‘-t|ﬂe: 3tring
-statusiD: String equalto [-formats: List
-Security Type: String elements’ | | -description: String
-parent: tring Ll -creators: List
-children: List - -subjects: List
-regAuthonty: String : -publishers: List
-revisionMotes: List ProfileElement -contributors: List
-dataDictlD: String -name: 3tring -dates: List
-id: String -sources: List
-desc: String -languages: List
-type: String -coverages: List
-unit: String -rights: List
-synonyms: List -contexts: List
-obligation: boolean -aggregation: 3tring
-maxOccurrence: int -clazz: String
-comments: String -locations: List
il
Enumerated Ranged Unspecified
ProfileElement ProfileElement ProfileElement
-values: List -min: double
-max: double

While this diagram shows the Java field names and Java classes, the relationship applies to profiles whether

they exist as Java objects, as RDF documents, or as XML documents in the profile vocabulary.

Inception Metadata

Profiles, whether expressed in RDF or in their own XML vocabulary, have a section for capturing

11

information about the resoutce's inception. This includes information about when the resoutce was created,

©2005 NASA/JPL -

ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 12

who created it, in what language it exists, and so forth. Profiles use the element set recommended by the
Dublin Core Metadata Initiative (IDCMI) set in order to describe the inception of a resource, with some
extensions.

Collectively, these metadata are called the resource attributes or r esAt t ri but es of the profile. Every profile
has one and only one set of r esAt t ri but es. The metadata elements within the r esAt t ri but es are
defined in this section.

Identifier

As defined by the DCMI, the | denti fi er of a resource is some unambiguous way to identify the resource.
In the profile implementation, one and only one | denti fi er is required.

Title

The Ti t | @ names the resource, and is the name by which the resource is formally known. The Ti t | e is
optional; if present, it may occur only once in a profile.

Format

The For mat indicates the manifestation of the resource. The MIME type is usually recorded here.

Description

The Descri pti on element contains a free text account of the content of the resoutce. It's optional in a
profile; if present, it may occur only once.

Creator

Zero or more Cr eat or s may be specified in a profile. Cr eat or s contain the name of people or
organizations that created the resource.

Subject

Zero or more Subj ect s in a profile act as keywords. The purpose of the Subj ect elements is to contain a
keywords that describe the resource, usually selected from a controlled vocabulary.

Publisher

Any number of Publ i sher elements may appear in a profile. They contain the organization responsible for
making the resource available.

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 13

Contributor

A Contri but or is a person ot organization providing auxilliary work towards the resource's creation. Any
number of Cont ri but or s may be listed in a profile.

Date

Dat e elements indicate the times in history when the resource was created. Any number of Dat es may be
included in a profile.

Type

The Type element indicates the nature of the content of the resource, such as "fiction" for a work of fiction
ot "image" for a dataset rendered graphically.

Source

When a resource is detived others, the Sour ce element indicates the | dent i fi er s of the referenced
resources.

Language

For resources that contain natural language content, the Language element indicates the languages in use.

Relation

When a resource is related to others, a profile can specify the | denti fi er s of the related resources using
zero or more Rel at i on elements.

Coverage

For resources that cover a space or time or jurisdiction, use the Cover age element to indicate such coverage.
This element may be listed any number of times in a profile, and its content usually comes from a controlled
vocabulary.

Rights

Copyright, ownership, redistribution, use, and other legal issues may exist for a resource. When that happens,
the Ri ght s element lists the rights management information.

Note: The official name of element for is plural Ri ght s; this is inconsistent with the other metadata elements,
but is consistent with the DCML

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 14

resContext

The r esCont ext element identifies the application environment or discipline within which the resource
originates and is derived from a taxonomy of scientific disciplines. This element is required in a profile and
may occur multiple times.

As an example, a r esCont ext of EDRN. St udy. SELDI tells that the resource is associated with the SELDI
Study under the EDRN.

resAggregation

The r esAggr egat i on element indicates the aggregative structure of the resource. It tells you what you'll get
if you retrieve the resource: a granule, a dataset, or a collection of datasets. The legal values of this optional
elements are:

* granul e, meaning the resource is a single product
» dat aSet , meaning the resource is a set of products

» dat aSet Col | ect i on, meaning the resource is collection of datasets

The r esAggr egat i on element is optional; however, if specified, it may appear in a profile only once.

resClass

The r esCl ass clement identifies the kind of the resource within a taxonomy of tesource types. It's a required
element that is used by the OODT Framework to determine how to treat the profile as well as the resource
named by the profile.

For example, a r esCl ass of syst em product Server indicates that the resource is an OODT product
server. A query that matches this profile means that if the same query were given to the identified product
server, it would yield a result. A resCl ass of syst em profil eServer means the resource is a profile
server. That means that while the current profile server may or may not provide a matching profile, another
profile server might, forming an implicit digraph of profile servers. Other valid r esCl ass values include
dat a. granul e, dat a. dat aSet ,and appl i cati on.interface.

resLocation

Zero or more I esLocat i on elements may appear in a profile. They tell where the resource is located, easily
the most important part of the profile. Because this element may appear several times, all locations should be
considered valid; the application may pick the one that's most convenient. The r esLocat i on may also

appear zero times. This means that the profile indicates solely that the resource exists, but where is unknown.

The interpretation of the resLocation is as a URIL For example, a r esCl ass of syst em pr oduct Ser ver
or system profil eServer means that the r esLocat i on indicates an URN to a software object name.
Querying that object will yield either the desired result (for product servers) or more matching profiles (for

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 15

profile servers). For a resClass of dat a. gr anul e or dat a. dat aSet , the r esLocat i on is an URL to the
granule or dataset.

Composition Metadata

The most interesting part of a profile is in the metadata that describes the composition of the resource that
the profile profiles. The composition metadata is what enables a profile server to tell if a particular resource
can answer a quety.

The composition metadata is based on the data element description standards in ISO/IEC standard 11179.
They are the profile elements or pr of El ement s of a profile. Every profile may have zero or more
pr of El enment s, the components of which are discussed in this section.

elemld

The el em d is an optional universally unique identifier applied to the element.

elemName

The el enName is the reguired name of the profile element. It serves as the title role of one of the components
of the resource.

elemDesc

The el enDesc is the description of the profile element. Although the title may often be enough to identify
the purpose of the profile element, the description should be used to provide any further, free-text
information that may be of importance to analysts and profile administrators.

elemType

The el enlype indicates the type of data represented in the profile element, synonymous to the ISO/IEC
11179 Dat at ype attribute. The permissible values are:

* bool ean

* character
e« date tine
* enuner at ed
* integer

* ordina

* rationa

e scal ed

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 16

* real

e conpl ex
e state

e void

This element is optional within a profile element. When it's not present, the profile element merely indicates
that the resource's content possesses the attribute, but more is not known.

elemUnit

The el enni t indicates the units associated with the values of the data element. This element is
synonymous to the ISO/IEC 11179 attribute uni t . of . quanti ty. Values for this optional element should
be selected from standardized tables of units.

elemEnumFlag, elemValue, elemMinValue, and elemMaxValue

The el enrEnunFl ag tells how possible values of the profile element are specified. It works with the
el emval ue, el enM nVal ue, and el enMaxVal ue elements:

 If the el enEnunFl ag's value is T and one or more el enVal ues appear, then the values listed are the
valid values of the element.

* If the value is F, then a closed range of values bounded by the profile's el emM nVal ue and
el emvaxVal ue elements indicates the valid values.

* If the value is T but no el enVal ues appear, then it means that any value is a valid value for the resoutce.

elemSynonym

Often, a characteristic of a resource will go by several names, especially between scientific disciplines. What
one person may call /atitude, another may call x coordinate, for example.

The el enSynonymprovides a way to indicate synonyms. Zero or more €l enmSynonyms may appear in a

p y ynony y app
profile element. The values of this element are names from data dictionaries other than the discipline data
dictionary hosting the profile.

elemComment

The el enmConment field provides a remark concerning the application of the data element. This element is
synonymous to the ISO/IEC 11179 attribute Comment , and is optional within a profile element.

Metadata about the Profile

For a profile server to manage a set of profiles, it's necessary to have metadata contained within the profile
that describes the profile itself. This metadata, collectively called the profile attributes, or pr of Att ri but es,

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 17

serves that purpose.

Most of the elements within the pr of At t ri but es are optional. This sections describes each of them.

profld

The pr of | d serves to give a unique identifier to the profile. It may be expressed as a URI, and often as an
URN, or as an OID.

profVersion

The pr of Ver si on identifies the version number of the profile.

profType

The pr of Type identifies the type of the profile. The type that typically appears here is pr of i | €, meaning
the profile is a profile (obviously).

Another type that can be here is dat aDi ¢t , which indicates that the profile doesn't describe a resource, but
instead is a data dictionary for other profiles. Such a profile's composition elements name the expected profile
elements and ranges of valid valuese that will appear in other profiles. The pr of Dat aDi ct | d element
identifies the profile serving as its data dictionary.

profStatusld

The pr of St at usl d identifies the state of the profile. Profiles may be either acti ve ori nacti ve. An
inactive profile is likely maintained for historical or exemplary reasons but is otherwise not currently used for
searches or resource descriptions.

profSecurityType

The pr of Securi t yType identifies whether the information contained in the profile may be of a sensitive
nature. Any string is valid here.

profParentld
The pr of Par ent | d optionally identifies the URI of the parent of this profile. Profiles may be arranged

hierarchically in a singly rooted tree in a forest.

profChildid

The pr of Chi | dl d identifies zero or more children (by duplicating the element) of this profile.

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.1 INFORMATION CAPTURED IN A PROFILE 18

profRegAuthority

The pr of RegAut hor i t y names the registration authority responsible for authoring and maintaining the
profile.

profRevisionNote
The pr of Revi si onNot e appears zero or more times in the profile to describe changes made to it over

time. The notes are free form text, and each element is ordered from newest to oldest note.

profDataDictld

The pr of Dat aDi ct | d identifies the profile providing a data dictionary to the current profile.

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.2

1.3.2 REPRESENTATION OF PROFILES 19

Representation of Profiles

Representation of ERNE Profiles

As you've surmised by now, Profiles exist as Java objects within ERNE. However, they can also be
represented as RDF documents or XML documents. When you quety the ERNE web service, you'll receive
them as XML documents, from which you can then re-construct Java objects, or manipulate them directly, if
you're not using Java.

XML Profiles

Profiles can be represented as XML documents that conform to the OODT Profile Document Type
Definition (DTD). The Formal Public Identifier of the OODT Profile DTD is -/ / JPL// DTD Profile
1. 0/ / EN The normative System Identifier is http://oodt.jpl.nasa.gov/grid-profile/dtd/ prof.ded.

Although you should refer to the normative System Identifier for the latest reference version, see the
following for the DTD:

<! ELEMENT profiles
(profile*)>

<! ELEMENT profile
(prof Attri butes,
resAttri butes,
pr of El enent *) >

<! ELEMENT prof Attri butes
(profld, profVersion?, profType,
prof Statusld, profSecurityType?, profParentld?, profChildld*,
pr of RegAut hority?, prof Revi si onNot e*)>

<! ELEMENT resAttributes
(ldentifier, Title?, Format*, Description?, Creator*, Subject*,
Publ i sher*, Contributor*, Date*, Type*, Source*,
Language*, Rel ation*, Coverage*, Rights*,
resCont ext +, resAggregation?, resC ass, resLocation*)>

<! ELEMENT pr of El enent
(el em d?, el emNane, el enDesc?, el enilype?, elenbnit?,
el enEnunfl ag, (el enVal ue* | (el enM nVal ue, el emVaxVal ue)),
el enSynonynt,
el enDbl i gation?, el emVaxCccurrence?, el enConment ?) >

<! ELEMENT profld (#PCDATA) >

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.2 REPRESENTATION OF PROFILES

<! ELEMENT pr of Ver si on (#PCDATA) >

<! ELEMENT pr of Type (#PCDATA) >

<! ELEMENT prof Parent|d (#PCDATA) >

<! ELEMENT prof Chi | dl d (#PCDATA) >

<! ELEMENT prof St at usl d (#PCDATA) >

<! ELEMENT prof SecurityType (#PCDATA) >
<! ELEMENT pr of RegAut hority (#PCDATA) >
<! ELEMENT pr of Revi si onNot e (#PCDATA) >

<! ELEMENT I dentifier (#PCDATA)>
<! ELEMENT Title (#PCDATA) >

<! ELEMENT Format (#PCDATA) >

<! ELEMENT Descri pti on (#PCDATA) >
<! ELEMENT Creator (#PCDATA)>

<! ELEMENT Subj ect (#PCDATA) >

<! ELEMENT Publ i sher (#PCDATA) >
<! ELEMENT Contri but or (#PCDATA) >
<! ELEMENT Dat e (#PCDATA) >

<! ELEMENT Type (#PCDATA) >

<! ELEMENT Sour ce (#PCDATA) >

<! ELEMENT Language (#PCDATA) >

<! ELEMENT Rel ati on (#PCDATA) >

<! ELEMENT Cover age (#PCDATA) >

<! ELEMENT Ri ghts (#PCDATA) >

<! ELEMENT resCont ext (#PCDATA) >
<! ELEMENT resAggregati on (#PCDATA) >
<! ELEMENT resCl ass (#PCDATA) >

<! ELEMENT reslLocati on (#PCDATA) >

<! ELEMENT el em d (#PCDATA) >

<! ELEMENT el emNane (#PCDATA) >

<! ELEMENT el enifype (#PCDATA) >

<! ELEMENT el enEnuntl ag (#PCDATA) >
<! ELEMENT el enDesc (#PCDATA) >

<! ELEMENT el enSynonym (#PCDATA) >

<! ELEMENT el enni t (#PCDATA) >

<! ELEMENT el enVal ue (#PCDATA) >

<! ELEMENT el enM nVal ue (#PCDATA) >
<! ELEMENT el enVaxVal ue (#PCDATA) >
<! ELEMENT el enpl i gati on (#PCDATA) >
<! ELEMENT el emvaxQccurrence (#PCDATA) >
<! ELEMENT el emComment (#PCDATA) >

Collections of Profiles

As you can see from the above,an XML element, pr of i | es is a container element to hold zero or more
profiles. Responses from ERNE servers always start with this element.

Java Representation of Profiles

The OODT source code includes a class j pl . eda. profile. Profil e for object represenation of a

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.2 REPRESENTATION OF PROFILES 21

profile. You can construct a Pr of i | e object from an XML document or create a blank one to populate with
metadata later. See the Profile Javadocs for more information.

Accessing Profile Metadata

To access the metadata of a profile, call the methods to retrieve the profile attributes, the resource attributes,
or the profile elements.

Accessing the Profile Attributes

You retrieve the profile attributes by calling get Profi | eAttri butes onaProfil e . This returns an
Profil eAttri butes object which provides methods to get and set the various attributes. Setting a value
sets it for the Prof i | e to which the Profi | eAttri but es belongs.

A value of nul | for an optional attribute means the value isn't set.

Accessing the Resource Attributes

You retrieve the resource attributes similarly as for profile attributes, calling get Resour ceAttri butes to
yield a Resour ceAttri butes object.

The Resour ceAt t ri but es has methods to get and set various attributes. Note that many of the attributes
are multi-valued. For example, the resource profiled will likely cover several subjects. In this case, the "get"
method, get Subj ect s, returns aj ava. util . Li st of Stri ngs. There is no set method. Instead, you just
manipulate the list to add and remove subjects.

Note: All of the "get" functions that return Li St s return lists of St ri ngs, except for get Dat es, which
returns a list of j ava. uti | . Dat es.

For other attributes which are singly valued, there is both a set and get method. For optional values, a value
of nul I means the attribute isn't set.

Accessing the Profile Elements

The profile stores its profile elements in a j ava. uti| . Map, mapping the name of the profile element (as a
St ri ng) to an object of class Prof i | eEl ement . To access this map, call the method

get Profil eEl ements onaProfil e.Because this method returns a reference to the Prof i | e's map,
any updates to the map affect the profile immediately.

Caution: Never store anything but St r i ngs as keys and Pr of i | eEl ement s (or objects of its subclasses) as
values in a profile element map. The software will not operate correctly if any other kind of object is stored.

Common Attributes of Profile Elements

The class j pl . eda. profile.Profil eEl ement contains the common parts of every profile element,

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.2 REPRESENTATION OF PROFILES 22

such as its required name, its optional description, and so forth. Use the value nul | for any optional attribute
that's unset.

The Profi | eEl ement stores its synonyms as a j ava. util . Li st of Stri ngs. Manipulate the list directly
to add or remove synonyms.

The Prof i | eEl ement class is abstract. To create new profile elements for a profile, you need to create
objects of one of the concrete Pr of i | eEl ement subclasses:

* Enuner at edPr of i | eEl enent
* RangedProfil eEl enent
* UnspecifiedProfil eEl enent

The following sections detail each kind of profile element.

Elements with Enumerated Values

For profile elements that maintain a specified list of valid values, use the Enuner at edPr of i | eEl enent
class. Objects of this class maintian a j ava. uti | . Li st of values. You can pass in a list of values when
constrcuting the object, or can call the get Val ues method and manipulate the list directly.

Querties that artive for an enumerated profile element must match one of the listed elements exactly unless it's
a negative (not-equal-to) query. For example, suppose we had an enumerated profile element fi | t er with
values i nfrar ed, vi si bl e, and ul travi ol et. A query asking for a filter equal to infrared should match,
as well as a query asking for a filter greater than or equal to infrared. A query asking for a filter not equal to
infrared shouldn't match, while a query asking for a filter not equal to x-ray should match.

Elements with a Range of Values

You can represent profile elements that have a range of valid values with the RangedPr of i | eEl enment
class. Construct this class with the minimum and maximum values, which must be numeric.

Use the get M nVal ue to get the minimum value and get MaxVal ue to get the maximum value.

Querying a profile that uses a range of values considers the range as inclusive. For example, suppose the
ranged profile element t enper at ur e has a minimum value of 32 and a maximum value of 212. A query that
requests temperatures less than 32 shouldn't match, but less than ot equal to 32 should match.

Elements with no Specified Values

For profile elements that you always want to match a query without explicitly listing each valid value or a
range of legal numeric values you can use the class Unspeci fi edProfi | eEl ement . This class identifies
an element with no range or list of valid values.

Querties that artive at such an element will avays match, even if they're negative (not-equal-to) queries.

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.2 REPRESENTATION OF PROFILES

©2005 NASA/JPL

ALL RIGHTS RESERVED

23

133

1.3.3 QUERYING PROFILE SERVERS 24

Querying Profile Servers

Querying ERNE Profile Servers

To retrieve a profile of a resource, you send a query to a ERNE web service. It, in turn, passes it to your
selected profile server, which queries its data stores and synthesizes profile objects. Finally, the web service
returns those matching profile objects in an XML document. You can then examine and manipulate this
XML document directly or construct Java profile objects out of it and manipulate them.

The Query Web Service
Retrieving profiles via HTTP uses a web service available at the ERNE single point of entry website:
https://ginger.fhcrc.org/q

Here the "q" means "query," and it enables you to pass queries into the OODT framework serving ERNE.
Profile queries will respond with XML documents representing a set of matching profiles.

Making Requests

To retrieve profiles using this web service, you need to know two things:
1. The object name of the profile server to which you'd like the query directed.
2. The guery expression that selects what profiles to retrieve.

The object name selects a single profile server from the various profile servers available. The query expression
selects profiles. Different profile servers accept different expressions and each serve different kinds of
metadata profiles.

Snce ERNE does not yet define any profile servers, none are currently available for querying.

The web service at ht t ps: // gi nger. f hcrc. or g/ q supports both HTTP GET and HTTP POST style
requests to retrieve profiles, as detailed in the HTTP specification . GET requests are generally easier; they
encode the parameters to a request right in the URL string. POST requests transmit the parameters of the
request separately. Most HTTP clients, including web browsers, as well as HTTP APIs in programming
languages, support both. For this document, we'll be using GET requests. The choice of which to use is up to
you.

When calling the web service at ht t ps: // gi nger. f hcrc. or g/ g, you need to pass in three parameters:

type

©2005 NASA/JPL « ALL RIGHTS RESERVED

ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

1.3.3 QUERYING PROFILE SERVERS 25

The type tells what kind of query you're making. This should always be set to profi | e.
object

This tells what profile server to query.

keywordQuery

This is the query expression to pass to the profile server

As with all most web services, you'll need to encode your parameters according to the rules in Uniform
Resource Identifiers whether they're part of the URL in an HTTP GET or transmitted separately in an HTTP
POST. In general, this means that characters like colons in object names as well as spaces and equals signs in
query expressions need to be propetly escaped. Most browsers and HTTP libraries will happily relax these
rules, though, especially in cases where there is no ambiguity. For ERNE profile queries, this means changing
your spaces to +s and any equals signs to ¥8Ds.

From XML to Java

If you're not into XML, you might find it more convenient to work with Java objects that represent profiles
and their attributes. Creating Java objects out of the XML document returned by the
https://ginger.fhcrc. org/ qweb service is really quite simple. First, make the URL to query the
service just as above. Open the URL and parse the response document into a Document Object Model
(DOM) tree. Then call the createProfiles method on the root element of the DOM tree.

Let's look at an example. Note that since ERNE has no profile servers yet, this is a hypothetical example.

inmport java.util.lterator;

inmport java.util.List;

inmport java.util.Map;

inmport javax.xmnl . parsers. Docunent Bui | der;

import javax.xml . parsers. Docunent Bui | der Fact ory;
import jpl.eda.profile.Profile;

import jpl.eda.profile.ProfileAttributes;

import jpl.eda.profile.ProfileEl ement;

inmport jpl.eda.profile. ResourceAttributes;
import org.w3c.dom Docunent;

public class UseProfiles {
public static void main(String[] argv) throws Throwabl e {

String url = "https://ginger.fhcrc.org/ g?"
+ "type=profil e&object=urn: eda: rm : EDRN. Profile"
+ " &keywor dQuer y=CELL_COUNT+=+%8D+200" ;

Docunent Bui | der Factory fac = Docunent Bui | der Fact ory. newl nst ance();

Docunent Bui | der buil der = fac. newDocunent Bui | der () ;

Document doc = buil der. parse(url);

List profiles = Profile.createProfil es(doc. get Docunent El enent ());

for (Iterator i = profiles.iterator(); i.hasNext();) {
Profile p = (Profile) i.next();
ProfileAttributes a = p.getProfileAttributes();
ResourceAttributes r = p.getResourceAttributes();
Systemout.println("PROFILE " + a.getID() + ":");

©2005 NASA/JPL « ALL RIGHTS RESERVED

ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt

1.3.3 QUERYING PROFILE SERVERS 26

Systemout.printin("\tResource title: " + r.getTitle());
List locs = r.getResLocations();
Systemout.println("\tLocations (" + locs.size() + "):");
for (lterator j = locs.iterator(); j.hasNext();)
Systemout.printIn("\t\t" + j.next());
Map el ens = p.getProfil eEl enents();
Systemout.printIn("\tEl ements (" + elens.size() + "):");
for (lterator j = elens.values().iterator(); j.hasNext();) {
ProfileEl enent e = (ProfileElenent) j.next();
Systemout.printIn("\t\tName: " + e.getName());
Systemout.println("\t\tLegal values: " + e.getValues());
Systemout.println("\t\tMn value: " + e.getMnValue());
Systemout.printin("\t\tMax value: " + e.getMaxVal ue());

This program sends a query to the web service and parses the response into an in-memory DOM tree. It then
createsaj ava. util . Li st of Profil e objects out of that tree, and iterates through the list, printing some
details about each Profi | e.

To compile and run this program, you'll need two other components:

* Profile Service , which contains definitions for classes such as Profil e, Profil eAttri butes, and so
forth.

* OODT Common Components , which contains basic utilities used by all other OODT components.

Since Java tools and integrated development environments vary, consult your own documentation on how to
make your system aware of these components. If you're using the Java command-line tools, then download
each of the binary distributions of the above components and copy the jar file from each into a directory, say
['i b. Then put UseProfi | es. j ava into a directory called sr . You can then compile

UseProfil es. | ava into a directory called cl asses and run the class:

%ls -1 lib
total 344
-rwr--r-- 1 kelly kelly 144169 12 Mar 07:41 edm commons-2.2.4.jar
-rwr--r-- 1 kelly kelly 201451 12 Mar 07:41 grid-profile-3.0.2.ja
%ls -1 src
total 4
-rwr--r-- 1 kelly Kkelly 1950 12 Mar 07:42 UseProfiles.java
% nkdir cl asses
% javac -extdirs lib -d classes src/UseProfiles.java
%ls -1 classes
total 4
-rwr--r-- 1 kelly kelly 2810 12 Mar 07:42 UseProfiles. class
%java -Dava.ext.dirs=lib -classpath classes UseProfiles
PROFI LE 1:
Identifier:

©2005 NASA/JPL « ALL RIGHTS RESERVED

1.3.3 QUERYING PROFILE SERVERS

Again, note that this is a hypothetical example of how the system may work, as there are no profile servers
defined yet for ERNE.

©2005 NASA/JPL « ALL RIGHTS RESERVED

27

